Fluorescence lifetime optical tomography with Discontinuous Galerkin discretisation scheme
نویسندگان
چکیده
We develop discontinuous Galerkin framework for solving direct and inverse problems in fluorescence diffusion optical tomography in turbid media. We show the advantages and the disadvantages of this method by comparing it with previously developed framework based on the finite volume discretization. The reconstruction algorithm was used with time-gated experimental dataset acquired by imaging a highly scattering cylindrical phantom concealing small fluorescent tubes. Optical parameters, quantum yield and lifetime were simultaneously reconstructed. Reconstruction results are presented and discussed.
منابع مشابه
An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry
We design an arbitrary high order accurate nodal discontinuous Galerkin spectral element approximation for the nonlinear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from a skew-symmetric formulation of the continuous problem. We prove that this discretisation exactly p...
متن کاملDispersion and Dissipation Error in High-Order Runge-Kutta Discontinuous Galerkin Discretisations of the Maxwell Equations
Different time-stepping methods for a nodal high-order discontinuous Galerkin discretisation of the Maxwell equations are discussed. A comparison between the most popular choices of Runge-Kutta (RK) methods is made from the point of view of accuracy and computational work. By choosing the strong-stability-preserving Runge-Kutta (SSP-RK) time-integration method of order consistent with the polyn...
متن کاملDiscontinuous Galerkin Finite Element Approximation of Nonlinear Non-Fickian Diffusion in Viscoelastic Polymers
We consider discrete schemes for a nonlinear model of non-Fickian diffusion in viscoelastic polymers. The model is motivated by, but not the same as, that proposed by Cohen et al. in SIAM J. Appl. Math., 55, pp. 348–368, 1995. The spatial discretisation is effected with both the symmetric and non-symmetric interior penalty discontinuous Galerkin finite element method, and the time discretisatio...
متن کاملTime-integration methods for finite element discretisations of the second-order Maxwell equation
This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite elementmethod (DG-FEM) and theH(curl)-conforming FEM. For the spatial discretisation, hierarchic H(curl)-conforming basis functions are used up to polynomial order p = 3 over tetrahedralmeshes, meaning fourth-order convergence ra...
متن کاملError estimation and adjoint based refinement for an adjoint consistent DG discretisation of the compressible Euler equations
Adjoint consistency – in addition to consistency – is the key requirement for discontinuous Galerkin discretisations to be of optimal order in L as well as measured in terms of target functionals. We provide a general framework for analysing adjoint consistency and introduce consistent modifications of target functionals. This framework is then used to derive an adjoint consistent discontinuous...
متن کامل